

API Developer Guide
Chat Solution 3.0

Dec 01, 2018

Corporate Head Office
Expertflow LLC, Jägerweg 18, 3014 Bern,

Switzerland

www.ExpertFlow.com

http://www.expertflow.com/

1 Table of Contents

1 Table of Contents

2 Architecture

2.1 Abbreviations

2.2 Chat Solution Architecture in Enterprise Deployment

2.4 Chat Solution APIs

2.5 Samples

2.6 Communication Interface Types

2.6.1 Developing the API Client Applications

2.7 Establish Chat Server Connection

2.7.1 Data Types

3 Customer API

3.0.1 Connecting Chat server

3.0.2 Register Connector

3.0.3 Initiate a chat request

3.0.4 Send and Receive messages

3.0.5 Request Transcript

3.1 Events

3.1.1 joinConversation

3.1.2 messageArrived

3.1.3 sendMessage

3.1.4 endConversation

3.1.5 requestAgentTransfer

3.2 Schema

3.2.1 ChatMessage object

3.2.2 ActivityMessage object

3.2.3 Participant object

3.2.4 Attachment object

3.2.5 ActivityTypes

4 Third Party Integration API

4.0.1 Message API

6 Agent API

6.1 Events

6.1.1 amq-sub

6.1.2 amq-send

6.1.3 amq-msg

6.1.4 login

6.1.5 changeState

6.1.6 receiveChatRequest

EF Chat Solution API Docs 2

6.1.7 acceptChatRequest

6.1.8 addParticipant

6.1.9 removeParticipant

6.1.10 transferChat

6.1.11 raiseHand

6.1.12 wrapUp

6.1.13 silentMonitor

6.1.14 bargeIn

6.2.1 messageArrived

6.3 Schema

6.3.1 Participant Object

6.3.2 Conversation Object

6.3.3 Customer Object

6.3.4 Agent Object

6.3.6 Supervisor Object

6.3.7 Team Object

6.3.8 ActivityMessage object

7 Chatbot API

7.0.2 registerBot

7.0.3
7.0.4 initConversation

7.0.5
7.0.6 joinConversation

7.0.7 messageArrived

7.0.8
7.0.9 sendMessage

7.0.10 endConversation

7.0.11 Past Messages

7.0.13 InitContext

EF Chat Solution API Docs 3

2 Architecture
This is a developer guide explaining Chat solution integration interfaces, their description, examples,

and communication flows.

2.1 Abbreviations

Short Name Full Name

MRE Media Routing Engine

Gadget Agent Gadget

Finesse Cisco Finesse

Server EF Chat Solution

2.2 Chat Solution Architecture in Enterprise Deployment

Solution Components

Routing Engine [Application Layer] Key component to perform precision

queuing & agent selection per MRD.

EF Chat Solution API Docs 4

https://www.draw.io/?scale=2#G1kXs-MkC7Qwcaoznvd9K2iK2z6LIT4k-A

The Media Routing Engine supports agent-state per MRD and

task-state per MRD operations.

Routing Engine UI [Presentation Layer] Routing Engine UI is used to configure

precision queues, routing algorithm, agent selection algorithm

and agent attributes

Routing Engine Database [Database Layer] Routing Engine configuration, queues

configuration, attributes configuration and agents

configuration is saved in Db.

Communication Server [Application Layer] It’s a middleware for all clients including

Cisco Finesse Task Gadget, Siebel CRM, Microsoft Dynamics,

SAP, and may be used with any desktop or server based CRM

solution. It allows integration of chat bots with chat tasks as

well.

Communication Server acts as middleware for multiple

customer side clients i.e. Skype, Facebook, Web Clients, Slack,

Twitter etc.

Chat Server [Application Layer] Chat server enables chat connectivity

between a customer and an agent.

2.4 Chat Solution APIs
There are following kind of API’s available for integration.

API Type Description

Customer API For Customer channel integration such as web, FB, SMS, and
others.
API based interface for developing customer chat interfaces
in a mobile or a web app.
provides support for customer side chat functions such as:

- initiating a chat request,
- ending chat session and
- request for chat transcript.

Third Party API For 3rd party applications to send messages to customers on
different channels like SMS, FB, WeChat etc.

Agent API Can embed the agent gadget in a 3rd party CRM application
or implement the Agent gadget API to develop your own
Agent gadget interface in your application for a web or a
mobile app

supports the agent side functionality such as:

- signing in to the contact center,

EF Chat Solution API Docs 5

- change state,
- accept chats,
- wrap up etc.

Chat Bot API To integrate other chatbots

Task Routing API provides a way to integrate task routing services which can
be used to select an appropriate agent for the chat.

2.5 Samples
Sample applications are provided with solution, you may use them to get started with development.

2.6 Communication Interface Types
All the API methods communicate in either of the following two communication styles.

Synchronous (REST) Synchronous interfaces are based on REST APIs.

Asynchronous

(web sockets)

Bidirectional communication can be carried out via HTTPS xhr polling or
via secure websockets or a mix of both (Chat server prefers HTTPS xhr
over websockets. However, Chat server may be configured to use any of
them)

2.6.1 Developing the API Client Applications
The framework communicates over REST and Socket.io. Choose any of the following language

frameworks for the custom application to connect with the Chat solution for:

- A new customer channel integration either from the web, mobile, or any social media

platform

- Bot connector for IBM Watson, DialogFlow, or any other bot

- Agent gadget for a CRM application, a desktop, or an embedded HTML5 application

Here is a list of available socket.io clients for the popular languages.

● JavaScript (client)

● NodeJS

● Java/Android

● .NET

● Swift (iOS)

● C++

For further details on how to create a socket.io application, explore socket.io documentation.

EF Chat Solution API Docs 6

https://socket.io/blog/
https://www.npmjs.com/package/socket.io-client
https://socket.io/blog/native-socket-io-and-android/
https://github.com/Quobject/SocketIoClientDotNet
https://socket.io/blog/socket-io-on-ios/
https://socket.io/blog/socket-io-cpp/
https://socket.io/docs/client-api/

2.7 Establish Chat Server Connection
To establish a client application connection to the Chat socket server, connect your socket.io client

application with the chat server host url http://<FQDN>/

2.7.1 Data Types
The following table lists the data types used in API parameters and notification message fields.

Type Description

Boolean A logical data type that has one of two values: true or false.

Integer A 32-bit wide integer.

Long A 64-bit wide integer.

String A variable-length string. If a maximum length exists, it is
listed with the parameter description.

EF Chat Solution API Docs 7

3 Customer API
You can use Customer API to develop customer channel applications such as web widget, an SMS

client, a Facebook, telegram, whatsapp or similar connector for the Chat solution. The integration

app may be embedded in a mobile or a web app.

To develop a customer channel client application, the application would:

1. Establish a connection with the Chat server

2. Upon successful connection, Initiate a chat request

3. Take the sessionId from the response received in step.2 and emit joinConveration in order to

be the participant of the conversation for bidirectional communication.

4. Implement Send and Receive messages for bidirectional message exchange.

5. Send campaign messages to customers received from chat server

3.0.1 Connecting Chat server
Establish a socket.io connection with the chat server using the URL

http/s://<FQDN-CHAT-SERVER>:PORT/, where

EF Chat Solution API Docs 8

https://www.draw.io/?page=3&scale=2#G1VVF6a8GDTwtdx10NDYdeG_oVyrHvOWqv
http://fqdn/

FQDN-CHAT-SERVER is the Chat server domain name or IP address accessed directly or via

reverse proxy.

PORT is the port number the Chat socket server is listening on. By default, the

Chat server listens on 8080 (HTTP) or 443 (HTTPS).

3.0.2 Register Connector

You need to register you connector with Chat Server, in order to receive third party messages which

will be forwarded to customers directly via your connector like in case of SMS, any third party will

request chat server to send campaign sms to customer, the chat server will deliver this message

along with customer contact number to the connector and the connector will send this message

directly to the customer

When the client is connected, (socket received connect event), emit this event.

Protocol Websockets

Event Name registerConnector

Source Client

Input/Output Format JSON

Request Payload {

 "id": "sms",
 "name": "ExpertFlow SMS Connector",
 "channel": "sms"
}

Payload Parameters id: Connector id used to identify in Chat Server, must be same
as channel name.
name: Friendly name of connector to display
channel: Name of channel

Event Triggered

3.0.3 Initiate a chat request

The Init REST API is used to initiate a chat request to server. The client application sends chat request

(containing requesting customer information).

The server responds with a chat conversationId . This conversationId is used to join a

room using joinConversation in order to send and receive chat messages.

Protocol HTTP

URL http://<FQDN>/api/customer/init

Content Type Application/JSON

EF Chat Solution API Docs 9

HTTP Method POST

Input/Output Format JSON

Request Body Following are the allowed parameters in the Request body.
name - full customer name
Email - customer email address
Phone - customer phone number
Channel - any of web, fb, sms, twitter
reqestId - (optional) GUID representing a unique chat request
timestamp - in the ISO 8601 format

Sample Request Body {

 "name": "Kashif Sohail",
 "email": "kashif@ef.com",
 "phone": "+1343122554",
 "channel": "web",
 "requestId": "99397bf7-a4fb-41c3-8292-a021b44262a6",
 "timestamp": "2018-05-07T06:52:21.661Z"
}

Request Parameters Request parameters can be defined by developers, with at least
one identifier parameter.
Channel parameter is required.

HTTP Response 200: Success
500: Internal Server Error
503: Service Unavailable

Response Body Returns following parameters:
conversationId - the ID that the client application should use to
join the conversation
Participant - customer identification as a participant for the
conversation
requestId - the same requestId the client submitted in the
request
Timestamp - the time in ISO 8601 format

Sample Response Body
(in case of success)

{

 "conversationId": "5ae01d346c25be4319a9df95",
 "participant": {
 "id":"d346c25",
 "name":"Kashif Sohail"
 },
 "requestId":"99397bf7-a4fb-41c3-8292-a021b44262a6",
 "timestamp": "2018-05-07T06:52:21.661Z"
}

Sample Response Body
(in case of failure)

EF Chat Solution API Docs 10

3.0.4 Send and Receive messages

Send messages Sending message is quite similar to receive messages. To send a message,

client needs to emit sendMessage event with payload ChatMessage and

ActivityMessage as per need.

Receive messages Client needs to implement messageArrived event for the conversation.

Payload for this event is a message. Message is the parent class of

ChatMessage and ActivityMessage. The payload contains property type in

the JSON root, which can be either ChatMessage or ActivityMessage.

3.0.5 Request Transcript

This request is used to get chat transcript of a particular chat session. Transcript can be requested

only after the chat session is ended. In case of ongoing chat session, the response will be Error 404.

Protocol HTTP

URL http://<FQDN>/api/customer/transcript/ID/Type

Content Type Application/JSON

HTTP Method GET

Input/Output Format JSON

HTTP Request -

Request Parameters ID: The ID of session
Type: Type of Transcript (email or pdf)

HTTP Response 200: Success
404: Not found
500: Internal Server Error
503: Service Unavailable

Example Response Response will be different based on different Type.
For Type “pdf”, the response will be pdf file
For Type “email”, response will be empty

3.1 Events
Here is the list of all possible events which can be used as command sent to server and events

received from server. Origin of each event is specified by Source.

Event Name Description

EF Chat Solution API Docs 11

joinConversation The joinConversation event is used to join the conversation to
send and receive messages.

messageArrived The messageArrived event is used to receive messages from
other participant. Client need to subscribe to this event.

sendMessage The event use to send message to a conversation. Client need
to emit this event.

endConversation The endConversation event is used to end an active
conversation.

3.1.1 joinConversation

The joinConversation event is used to join the conversation to send and receive messages.

Protocol Websockets

Event Name joinConversation

Source Client

Input/Output Format JSON

Request Payload {

 "conversationId": "5ae01d346c25be4319a9df95",
 "participant": {
 "id":"d346c25",
 "name":"Alice"
 },
 "requestId":"99397bf7-a4fb-41c3-8292-a021b44262a6",
 "timestamp": "2018-05-07T06:52:21.661Z"
}

Payload Parameters conversationId: Id of the conversation to join
id: Participant id, supplied in response of initiate chat request
name: Name of participant to display in conversation

Event Triggered messageArrived
type: ActivityMessage
activityType: greetings

3.1.2 messageArrived

The messageArrived event is used to receive messages from other participant. Client need to

subscribe to this event.

Protocol Websockets

Event Name messageArrived

Source Server

EF Chat Solution API Docs 12

Input/Output Format JSON

Event Payload (for
ChatMessage)

{

 "conversationId": "7g5639ju987g",
 "type": "ChatMessage",
 "requestId":"99397bf7-a4fb-41c3-8292-a021b44262a6",
 "timestamp": "2018-05-07T06:52:21.661Z",
 "from": {
 "id": "abcdedf",
 "name": "Kashif Sohail"
 },
 "to": [
 {

 "id": "yferdt5",
 "name":"Alice"
 },
 {

 "id": "4ty678gu",
 "name":"Bob"
 }
],

 "refId":"00923011234567",
 "text": "Hello, what is the status of my request",
 "attachments": []
}

Payload Parameters conversationId: The id of conversation to which message is
being sent
type: Type of message, see ChatMessage and ActivityMessae
for details.

Event Triggered

3.1.3 sendMessage

The sendMessage event is used to publish messages to the conversation. Client need to emit this

event. It’s format is similar to messageArrived.

Protocol Websockets

Event Name sendMessage

Source Client

Input/Output Format JSON

Event Payload (for
ChatMessage)

{

 "conversationId": "7g5639ju987g",
 "type": "ChatMessage",
 "requestId":"99397bf7-a4fb-41c3-8292-a021b44262a6",
 "timestamp": "2018-05-07T06:52:21.661Z",
 "from": {
 "id": "abcdedf",
 "name": "Kashif Sohail"
 },
 "text": "Hello, what is the status of my request",
 "attachments": []
}

EF Chat Solution API Docs 13

Payload Parameters conversationId: The id of conversation to which message is
being sent
type: Type of message, see ChatMessage and ActivityMessae
for details
from: The sender participant
text: text content of message.

Event Triggered

3.1.4 endConversation

The endConversation event is used to end an active conversation.

Protocol Websockets

Event Name endConversation

Source Client

Input/Output Format JSON

Event Payload {

 "conversationId": "7g5639ju987g",
 "requestId":"99397bf7-a4fb-41c3-8292-a021b44262a6",
 "timestamp": "2018-05-07T06:52:21.661Z"
}

Payload Parameters conversationId: Id of the conversation to end

Event Triggered

3.1.5 requestAgentTransfer

The requestAgentTransfer event is used to transfer chat from bot to human (in case bot is enabled).

Protocol Websockets

Event Name requestAgentTransfer

Source Client

Input/Output Format JSON

Request Payload {

 "conversationId": "7g5639ju987g",
 "requestId":"99397bf7-a4fb-41c3-8292-a021b44262a6",
 "timestamp": "2018-05-07T06:52:21.661Z"
}

Payload Parameters conversationId: Id of the conversation

Event Triggered

EF Chat Solution API Docs 14

3.2 Schema
Schema defines the object and its properties that your client application can use to communicate

with server.

Object Description

ChatMessage Object Defines a text message that is exchanged between server and
client application.

ActivityMessage Object Defines a activity message that is exchanged between server
and client application.

Participant object Defines a bot or user account in the conversation.

Attachment Object Array of Attachment objects that defines additional
information to include in the message. Each attachment may
be a media file (e.g., audio, video, image, file).

ActivityTypes Types of activity messages

3.2.1 ChatMessage object
Defines a message that is exchanged between server and client.

Property Type Description

conversationId String The ID that identifies the conversation. The ID is
unique per conversation. This conversationId is
generated from service side and sent to client when
the client request initiate chat

type String Type of message. ChatMessage in this case.

from Participant A Participant object that specifies the sender of the
message

to Participant[] Array of Participant objects that specifies the
recipients of the message. If the list is empty, the
message will be broadcasted in the conversation.

text String Text of the message that is sent from user to bot or
bot to user

refId String Account Id of the receiving account. (Phone no, in
case of SMS)

attachments Attachment[] Array of Attachment objects that defines additional
information to include in the message. Each
attachment may be a media file (e.g., audio, video,

EF Chat Solution API Docs 15

image, file)

3.2.2 ActivityMessage object
Defines a activity message that is exchanged between server and client.

Property Type Description

conversationId String The ID that identifies the conversation. The ID is
unique per conversation. This conversationId is
generated from service side and sent to client when
the client request initiate chat

type String Type of Message. ActivityMessage in this case

from Participant A Participant object that specifies the sender of the
message

to Participant[] Array of Participant objects that specifies the
recipients of the message. If the list is empty, the
message will be broadcasted in the conversation.

activityType String Type of activity. One of these values:
greetings, typing, participantAdded,
participantRemoved, participantJoined,
participantLeft, endOfConversation
For details about activity types, see AcitivityTypes

info Object Notification data.

3.2.3 Participant object
Defines a bot or user account in the conversation.

Property Type Description

id String ID that uniquely identifies the bot or user in the
conversation.

name string Name of the bot or user.

3.2.4 Attachment object
Array of Attachment objects that defines additional information to include in the message. Each

attachment may be a media file (e.g., audio, video, image, file).

Property Type Description

type String The media type of the content in the attachment.
For media files, set this property to known media
types such as image/png, audio/wav, and video/mp4

name String Name of the attachment.

EF Chat Solution API Docs 16

contentUrl String URL for the content of the attachment. For example,
if the attachment is an image, set contentUrl to the
URL that represents the location of the image.
Supported protocols are: HTTP, HTTPS, File, and
Data.

thumbnailUrl String URL to a thumbnail image that the channel can use if
it supports using an alternative. For example, if you
set type to application/word and set contentUrl to
the location of the Word document, you might
include a thumbnail image that represents the
document. The widget could display the thumbnail
image instead of the document. When the user
clicks the image, the channel would open the
document.

3.2.5 ActivityTypes
The most common type of activity is greetings, when a conversation is initiated, the client receives

greetings from server.

The following activity types are supported by the server.

ActivityType Description

greetings The greeting message, when a conversation is initiated, the
server sends greeting message to client. This message is
configurable and can be changed in the admin panel.

typing Indicates that the user or bot on the other end of the
conversation is compiling a response.

participantAdded Indicates a participant added to the conversation

participantRemoved Indicates a participant has removed from the conversation

participantJoined Indicates a participant has joined the conversation

participantLeft Indicates a participant has left the conversation

endOfConversation Indicates the end of a conversation.

EF Chat Solution API Docs 17

EF Chat Solution API Docs 18

4 Third Party Integration API
Third party integration API to send messages to customer on any channel via chat server and update

delivery status as well.

4.0.1 Message API

The message REST API is used to send a message (such as a campaign message) to customers on

different channels via chat server. The message will be submitted to the chat server via this API. The

chat server will transmit this message to connector of the channel specified in the REST call. If the

connector is not connected to the chat server, the server will returns the status 503 for the request.

Protocol HTTP

URL http://<FQDN>/api/external/message

Content Type Application/JSON

HTTP Method POST

Input/Output Format JSON

Request Body Following are the allowed parameters in the Request body.
channel - Channel ID, a connector must be connected with Chat
Server with this channel.
messageId - a unique string to identify message
destination - the reference of customer, to which this message
will be delivered. Mobile number in case of SMS, facebook
account id in case of Facebook message.
from.id - the id of campaign or sender agent
from.name - the display name of campaign or sender agent.
from.app - name of the application which is sending message.
text - text content of message to be delivered.
timestamp - in the ISO 8601 format.

Sample Request Body {

 "channel": "sms",
 "messageId": "abbcda323",
 "destination": "3015642191",
 "from": {
 "id": "sales_2018_winter",
 "name": "Sale Campaign",
 "app": "Expertflow Campaign Manager"
 },
 "timestamp": "2018-11-23T08:51:28.255",
 "text": "Expertflow campaign message"
}

HTTP Response 200: Success
500: Internal Server Error
503: Service Unavailable

EF Chat Solution API Docs 19

Response Header requestId - Chat server will respond with requestId in response
header, this id can be used to cross check the logs in both
systems.

EF Chat Solution API Docs 20

6 Agent API
The purpose of Agent API is to enable human agents to connect with customers and respond to their

queries.

6.1 Events
Here is the list of all possible events which can be used as command sent to server and events

received from server. Origin of each event is specified by Source.

Event Name Description

amq-sub This event is used to subscribe to ActiveMQ topic.

amq-send This event is used to send ActiveMQ related messages.

amq-msg This event is used to receive message from ActiveMQ

login This event is used to login in the system

receiveChatRequest The receiveChatRequest event is used to show a chat request
from customer

acceptChatRequest This event is used to accept the chat request. Client need to
emit this event.

changeState Client emit this event to change his state

addParticipant This event is used to add a participant in the chat. Client
needs to emit this event.

removeParticipant This event is used to remove a participant from the chat.
Client needs to emit this event.

transferChat The transferChat event is used to transfer a chat from one
agent to another agent/supervisor. Client needs to emit this
event.

raiseHand The raiseHand event is used to add supervisor in the chat as
participant. Client needs to emit this event.

wrapUp The wrapUp is used at the end of conversation to upload
wrapup data. Client needs to emit this event.

silentMonitor The silentMonitor event is used by supervisor to monitor any
active conversation of some agent in his team. Client needs
to emit this event.

bargeIn The bargeIn event is used by supervisor to join the
conversation. Client needs to emit this event.

EF Chat Solution API Docs 21

messageArrived The messageArrived event is used to receive messages from
other participant. Client need to subscribe to this event.

6.1.1 amq-sub
This request is used for agent to subscribe on chat solution’s activemq.

Protocol Websockets

Event Name amq-sub

Source Client

Input/Output Format JSON

Request Payload {

 "AgentId": "abc",
}

Payload Parameters AgentId: Id of the agent to login

Event Triggered

6.1.2 amq-send
For communication with media routing engine, chat solution uses activemq. Any message which

needs to be passed to activemq is sent through amq-send event.

Protocol Websockets

Event Name amq-send

Source Client

Input/Output Format JSON

Request Payload {

 "head": "Login",
}

Payload Parameters head: this is the JMS type of activemq message
There will be other parameters of the request as well inside
request payload.

Event Triggered

6.1.3 amq-msg
This event is used for sending activemq message data to client.

Protocol Websockets

Event Name amq-msg

Source Server

EF Chat Solution API Docs 22

Input/Output Format JSON

Request Payload {

 "head": "AgentInfo",
}

Payload Parameters head: this is the JMS type of activemq message

Event Triggered

6.1.4 login
This request is used for agent to login in chat solution.

Protocol Websockets

Event Name login

Source Client

Input/Output Format JSON

Request Payload {

 "agentId": "abc",
 "password":"*******",
 "mrd": "mrd-id"
}

Payload Parameters agentId: Id of the agent to login
Password: password of the agent
Mrd:Id of the Mrd in which agent want to login

Event Triggered messageArrived
type: activityMessage

6.1.5 changeState
It allows the agent to change state between ready and not-ready.

Protocol Websockets

Event Name changeState

Source Client

Input/Output Format JSON

Request Payload {

 "state": "NOT_READY",
 "mrd": "mrd-id",
}

EF Chat Solution API Docs 23

Payload Parameters state: agent requested state

Event Triggered messageArrived
type: activityMessage

6.1.6 receiveChatRequest

When agent is in ready state, receives a new chat request from customer,

Protocol Websockets

Event Name receiveChatRequest

Source server

Input/Output Format JSON

Request Payload {

 "customer": "customer object",
}

Payload Parameters customer: Object of the customer containing customer
information and conversationId

Event Triggered messageArrived
type: activityMessage

6.1.7 acceptChatRequest

Agent can accept the chat request once receives a chat request. After accepting the chat request,

chat will be started between agent and customer.

Protocol Websockets

Event Name acceptChatRequest

Source client

Input/Output Format JSON

Request Payload {

 "conversationId": "abc333"
}

Payload Parameters conversationId:

Event Triggered

6.1.8 addParticipant

Once chat is active between agent and customer, agent can add other participants in the chat.

EF Chat Solution API Docs 24

Protocol Websockets

Event Name addParticipant

Source client

Input/Output Format JSON

Request Payload {

 "participant": "participant object"
}

Payload Parameters participant: participant object having participant information
such as agentId etc.

Event Triggered messageArrived
type:activityMessage
activityType: participantAdded

6.1.9 removeParticipant

Agent, who first received the chat request from customer is the owner of the conversation. If there

are multiple participants in the conversation other than customer than agent (owner of the chat) can

remove any participant from the conversation other than customer.

Protocol Websockets

Event Name removeParticipant

Source client

Input/Output Format JSON

Request Payload {

 "participantId": "participantId",
 "conversationId": "conversationId"
}

Payload Parameters participantId: Id of the participant
conversationId: Id of the conversation

Event Triggered messageArrived
type: activityMessage
activityType: participantRemoved

6.1.10 transferChat

Once agent has added other participants in the chat, he can transfer chat to any of the participants

(agents/supervisor).

EF Chat Solution API Docs 25

Protocol Websockets

Event Name transferChat

Source client

Input/Output Format JSON

Request Payload {

 "participantId": "participantId",
 "conversationId": "conversationId"
}

Payload Parameters participantId: Id of the participant
conversationId: Id of current conversation

Event Triggered

6.1.11 raiseHand

During a chat, if agent needs help, he can raise hand. By raising hand a chat request will be sent to

his supervisor. Once supervisor accepts the request, chat history will be visible to him and now he

can help the agent.

Protocol Websockets

Event Name raiseHand

Source client

Input/Output Format JSON

Request Payload {

 "conversationId": "conversationId",
 "participantId": "supervisorId"

}

Payload Parameters participantId: Id of the supervisor
conversationId: Id of current conversation

Event Triggered

6.1.12 wrapUp

At the end of conversation with the customer, agent can submit wrap-up.

Protocol Websockets

Event Name wrapUp

Source client

EF Chat Solution API Docs 26

Input/Output Format JSON

Request Payload {

 "conversationId": "conversationId",
},

 "wrapup": "wrapup text",

Payload Parameters conversation: conversation object containing conversationId
wrapup: wrapup reason text

Event Triggered

6.1.13 silentMonitor

Supervisor can see all active conversations of his team. He can select and monitor any of the active

conversation but cannot participate in the conversation. This is called silent monitoring.

Protocol Websockets

Event Name silentMonitor

Source client

Input/Output Format JSON

Request Payload {

 "conversationId": "conversationId",
}

Payload Parameters conversation: conversation object containing conversationId

Event Triggered

6.1.14 bargeIn

During silent monitoring, if supervisor wants to participate in the conversation, he will use bargeIn

functionality. An activity message will be sent to the participants of the conversation other than

customer that supervisor has joined the conversation. Now supervisor can send message as well.

Protocol Websockets

Event Name bargeIn

Source client

Input/Output Format JSON

Request Payload {

 "conversationId": "conversationId",
}

Payload Parameters conversation: conversation object containing conversationId

EF Chat Solution API Docs 27

Event Triggered messageArrived
type: activityMessage
activityType: participantJoined

6.2.1 messageArrived

The messageArrived event is used to receive messages from other participant. Client need to

subscribe to this event.

Protocol Websockets

Event Name messageArrived

Source Server

Input/Output Format JSON

Event Payload (for
ChatMessage)

{

 "conversationId": "7g5639ju987g",
 "type": "ChatMessage",
 "requestId":"99397bf7-a4fb-41c3-8292-a021b44262a6",
 "timestamp": "2018-05-07T06:52:21.661Z",
 "channel": "web",
 "from": {
 "id": "abcdedf",
 "name": "Kashif Sohail"
 },
 "to": [
 {

 "id": "yferdt5"
 },
 {

 "id": "4ty678gu"
 }
],

 "text": "Hello, what is the status of my request",
 "attachments": []
}

Payload Parameters conversationId: The id of conversation to which message is
being sent
type: Type of message
channel: The channel on which messaging

Event Triggered

6.3 Schema

6.3.1 Participant Object
Defines a participant of the conversation and who can send or receive messages.

Property Type Description

EF Chat Solution API Docs 28

displayName String Name of the participant to be displayed to other
participants of the conversation

type String Type of participant. It can be Agent, Supervisor, Bot
or Customer

Role String Role of the participant. Owner or Participant

status String Status of the participant. Ready, Active, Busy

6.3.2 Conversation Object
Defines a conversation which contains information of participants and messages being sent among

participants.

Property Type Description

Id String The ID that identifies the conversation. The ID is
unique per conversation. This conversationId is
generated from service side and sent to client when
the client request initiate chat

type String Type of Message. ActivityMessage in this case

participants Participant[] Array of Participant objects.

activityType String Type of activity. One of these values:
greetings, typing, participantAdded,
participantRemoved, participantJoined,
participantLeft, endOfConversation
For details about activity types, see AcitivityTypes

messages Message[] List of messages exchanged in current conversation.

6.3.3 Customer Object
Defines a customer which is also a participant of the conversation.

Property Type Description

displayName String Name of the participant to be displayed to other
participants of the conversation

email String Email of the customer

phone String Phone number of the customer

channel String The channel on which messaging

6.3.4 Agent Object
Defines an agent who is a participant of the conversation.

EF Chat Solution API Docs 29

Property Type Description

displayName String Name of the participant to be displayed to other
participants of the conversation

type String Type of participant. In this case it will be Agent.

role String Role of the participant. Owner or Participant

status String Status of the participant. Ready, Active, Busy

teams Team[] List of teams in which agent is the member

conversations Conversation[] List of active conversations.

6.3.6 Supervisor Object
Defines supervisor, he is also a participant of the conversation.

Property Type Description

displayName String Name of the participant to be displayed to other
participants of the conversation

type String Type of participant. In this case it will be Agent.

role String Role of the participant. Owner or Participant

status String Status of the participant. Ready, Active, Busy

team Team Supervisor’s team, in which his role is Supervisor

6.3.7 Team Object
Defines team, an agent and supervisor are always part of some team.

Property Type Description

id String Each team has always a unique identification.

name String Name of the team

members Agent[] Agents are added as members of the team. A team
will consists of multiple agents

supervisors Supervisor[] List of supervisors. A team can have 1 or more
supervisors

6.3.8 ActivityMessage object
Defines a activity message that is exchanged between server and client.

Property Type Description

EF Chat Solution API Docs 30

conversationId String The ID that identifies the conversation. The ID is
unique per conversation. This conversationId is
generated from service side and sent to client when
the client request initiate chat

type String Type of Message. ActivityMessage in this case

from Participant A Participant object that specifies the sender of the
message

to Participant[] Array of Participant objects that specifies the
recipients of the message. If the list is empty, the
message will be broadcasted in the conversation.

activityType String Type of activity. One of these values:
greetings, typing, participantAdded,
participantRemoved, participantJoined,
participantLeft, endOfConversation
For details about activity types, see AcitivityTypes

info Object Notification data.

EF Chat Solution API Docs 31

7 Chatbot API
The chatbot API facilitates the developers to integrate a chatbot with ExpertFlow Chat server and

make the bot available for conversation.

Connecting a bot to Chat server
In order to communicate with ExpertFlow Chat server the chatbot API should be a socket.io client

and it should send a registerBot request to make itself available for chat.

Send/Receive messages via Websocket
Client have to implement initConversation to start the conversation, the response includes

conversationId and participant. Client needs to emit joinConversation in order to be a participant of

the conversation.

Receive messages
Client needs to implement messageArrived event for the conversation. Payload for this event is a

message. The payload contains property type in the JSON root, which can be either ChatMessage or

ActivityMessage.

Send Messages
Sending message is quite similar to receive messages. To send a message, client needs to emit

sendMessage event with payload BotMessage.

Communication Flow

Events
Here is the list of all possible events which can be used as command sent to server and events

received from server. Origin of each event is specified by Source.

EF Chat Solution API Docs 32

https://docs.google.com/document/d/16EYrHHJlp64Mt0b2Gek9Bxd7oLBZ_L0aiQrGrWpnzo0/edit#heading=h.mpsiy9dja0et
https://docs.google.com/document/d/16EYrHHJlp64Mt0b2Gek9Bxd7oLBZ_L0aiQrGrWpnzo0/edit#heading=h.68yfy1k85yh6
https://docs.google.com/document/d/16EYrHHJlp64Mt0b2Gek9Bxd7oLBZ_L0aiQrGrWpnzo0/edit#heading=h.on4xmi2xvrv8
https://www.draw.io/#G1c9Br-xlzkL2ftWtgVnFXhuojdaVgDrxE

Event Name Description

registerBot This event register’s a bot with EF chat server to make the bot available

for chat. Client need to emit this event.

initConversation This event initiates a conversation so that bot can start communicating.

joinConversation This event is used to join the conversation to send and receive messages.

Client need to emit this event.

messageArrived This event is used to receive messages from other participant. Client need

to subscribe to this event.

sendMessage This event is used to send message to a conversation. Client need to emit

this event.

endConversation This event ends an active conversation.

7.0.2 registerBot
This event register’s a bot with EF chat server to make the bot available for chat. Client need to emit

this event. The initializations required for session or context maintenance can be done in this event.

Protocol Websockets

Event Name registerBot

Source Client

Input/Output Format JSON

Event Payload {

 "id": Bot",
 "name":"Rasa Bot",
 "type":"Rasa"
}

Payload Parameters id: The id of bot to be registered

name: Display name of bot

type: The type of the bot to be registered

Event Triggered

7.0.3

7.0.4 initConversation
The connector will receive this event when a new conversation is initiated on chat server for a

customer. It comes along with the conversationId and customer information. At the point, we expect

EF Chat Solution API Docs 33

from bot is to expose an api to create a session/dialog/context on the bot side if not exist already

and load it in other case. The Bot connector will invoke Bot’s initContext api to achieve this goal.

The connector need to emit joinConversation in order to be the participant of this particular

conversation to receive chat messages. The session maintenance and context maintenance can be

done in this event.

Protocol Websockets

Event Name initConversation

Source Server

Input/Output Format JSON

Event Payload {

 "conversationId": "-OPoRo7eDS",
 "customerInfo": {
 "accountId":"LK9VmDiwM",
 "name":"Ali",
 "email":"abc@gmail.com",
 "accountBalance":"$350",
 "phone":"12345",
 "channel":"web"
 }
}

Payload Parameters conversationId: The id of conversation to which message is being sent

Event Triggered joinConversation

7.0.5

7.0.6 joinConversation
This event is used to join the conversation to send and receive messages. Client need to emit this

event.

Protocol Websockets

Event Name joinConversation

Source Client

Input/Output Format JSON

Request Payload {

 "conversationId": "-OPoRo7eDS",
 "participant": {
 "id":"bot",
 "name":"Rasa bot"
 },
 "requestId":"99397bf7-a4fb-41c3-8292-a021b44262a6",
 "timestamp": "2018-05-07T06:52:21.661Z"

EF Chat Solution API Docs 34

}

Payload Parameters conversationId: Id of the conversation to join

id: Participant id, supplied in response of initConversation

name: Name of participant to display in conversation

Event Triggered messageArrived
type: ActivityMessage
activityType: participantJoined

7.0.7 messageArrived
This event is used to receive messages from other participant. Client need to subscribe to this event.

Protocol Websockets

Event Name messageArrived

Source Server

Input/Output Format JSON

Event Payload (for

ChatMessage)

{

 "conversationId": "7g5639ju987g",
 "type": "ChatMessage",
 "requestId":"99397bf7-a4fb-41c3-8292-a021b44262a6",
 "timestamp": "2018-05-07T06:52:21.661Z",
 "from": {
 "id": "abcdedf",
 "name": "Kashif Sohail"
 },
 "to": [
 {

 "id": "yferdt5",
 "name":"Alice"
 },
 {

 "id": "4ty678gu",
 "name":"Bob"
 }
],

 "text": "Hello, what is the status of my request",
 "attachments": []
}

Payload Parameters conversationId: The id of conversation to which message is being

sent

type: Type of messages are ChatMessage , ActivityMessage or

BotMessage.

Event Triggered

EF Chat Solution API Docs 35

7.0.8

7.0.9 sendMessage
This event is used to send message to a conversation. Client need to emit this event.

Protocol Websockets

Event Name sendMessage

Source Client

Input/Output Format JSON

Event Payload {

 "conversationId":"lL3TP8jvjw",
 "messageId":"h7VcOjUimR",
 "type":"BotMessage",
 "from":{
 "id":"ZaWmuxevX",
 "name":"Ali"},
 "bot":{
 "id":"bot",
 "name":"EF Rasa Bot",
 "type":"Rasa"},
 "timestamp":"2018-08-28T10:47:55.823Z",
 "input":" what would be the price of 100 agents",
 "intents":[
 {

 "confidence":0.23290375626207,
 "name":"offer_requested"
 }],
 "entities" :[
 {

 "confidence":0.5421172436275492,
 "end":31,
 "entity":"NbrAgents",
 "extractor":"ner_crf",
 "start":28,
 "value":"100"
 }],
 "output":[
 {

 "name":"Sorry I could not recogonize 'None'.
Please repeat your question, this time, clearly

mention your product / service of interest!",
 "confidence":0.999995648695882
 },
 {

 "name":"Please repeat your question, this time,
also mention your product / service of interest!",
 "confidence":0.0026695198393466
 }]
}

EF Chat Solution API Docs 36

Payload Parameters conversationId: The id of conversation to which message is being

sent

type: Type of messages are ChatMessage , ActivityMessage or

BotMessage.
from: The sender participant

text: text content of message.

Event Triggered

7.0.10 endConversation
This event ends an active conversation. The garbage collection and reinitialization of session or

context maintenance can be managed here.

Protocol Websockets

Event Name endConversation

Source Server

Input/Output Format JSON

Event Payload {

 "conversationId": "7g5639ju987g",
 "requestId":"99397bf7-a4fb-41c3-8292-a021b44262a6",
 "timestamp": "2018-05-07T06:52:21.661Z"
}

Payload Parameters conversationId: Id of the conversation to end

Event Triggered

7.0.11 Past Messages
To load message history of a conversation.

Protocol HTTP

URL http://<FQDN>/api/conversation/past-messages

Content Type Application/JSON

HTTP Method GET

Input/Output Format JSON

Request Body Following are the allowed parameters in the Request body.
conversationId: represents a session on chat solution. The chat
solution returns that on a conversation initialization.
count: Number of messages to fetch

EF Chat Solution API Docs 37

time: The time in ISO 8601 format. The solution returns past
messages older than this time specified.
To get last 10 messages, specify the time as current time and
count should be 10.

Sample Request Body {

 "conversationId": "-OPoRo7eDS",
 "count":10,
 "time": "2018-05-07T06:52:21.661Z"
}

HTTP Response 200: Success
500: Internal Server Error
503: Service Unavailable
404: Conversation Not found

Response Body The response object contains conversationId, participant list for
this conversation, and messages.
The messages is an array of ChatMessage

Sample Response Body
(in case of success)

{

 "conversationId": "5ae01d346c25be4319a9df95",
 "participants": [
 {

 "id": "d346c25",
 "name": "Kashif Sohail",
 "type": "Customer"
 },
 {

 "id": "88hfyw6",
 "name": "Awais Aslam",
 "type": "Agent"
 }
],

 "messages": [
 {

 "conversationId": "7g5639ju987g",
 "type": "ChatMessage",
 "requestId":
"99397bf7-a4fb-41c3-8292-a021b44262a6",
 "timestamp": "2018-05-07T06:52:21.661Z",
 "from": {
 "id": "d346c25",
 "name": "Kashif Sohail"
 },
 "to": [
 {

 "id": "88hfyw6",
 "name": "Awais Aslam"
 },
 {

 "id": "4ty678gu",
 "name": "Bob"
 }
],

 "text": "Hello, what is the status of my
request",
 "attachments": []
 },

 {

EF Chat Solution API Docs 38

 "conversationId": "7g5639ju987g",
 "type": "ChatMessage",
 "requestId":
"99397bf7-a4fb-41c3-8292-a021b44262a6",
 "timestamp": "2018-05-07T06:52:21.661Z",
 "from": {
 "id": "abcdedf",
 "name": "Kashif Sohail"
 },
 "to": [],
 "text": "Your request is awaiting approval from
manager.s",
 "attachments": []
 }

],

 "requestId": "8876553-a4fb-41c3-hg54-a021b44262a6",
 "timestamp": "2018-05-07T06:52:21.661Z"
}

Sample Response Body
(in case of failure)

7.0.13 InitContext

The initContext REST API will be used to initiate a customer’s context on the bot side. The bot

connector will call this when it receives initConversation from the chat server. The bot may initialize

a dialog/context in it’s memory if this conversationId is not seen before or load if it already exists.

Protocol HTTP

URL http://<Bot-FQDN>/api/initContext

Content Type Application/JSON

HTTP Method POST

Input/Output Format JSON

Request Body Following are the allowed parameters in the Request body.
conversationId: represents a session on chat solution. Unique
per customer.
customerInfo: A complete object contains customer
information provided by chat initiating component.

Sample Request Body {

 "conversationId": "-OPoRo7eDS",
 "customerInfo": {
 "accountId":"LK9VmDiwM",
 "name":"Ali",
 "email":"abc@gmail.com",
 "accountBalance":"$350",
 "phone":"12345",

EF Chat Solution API Docs 39

 "channel":"web"
 }
}

HTTP Response 200: Success
500: Internal Server Error
503: Service Unavailable

EF Chat Solution API Docs 40

